Jiangsu University of Technology Library

中国知网博硕士学位论文数据库检索导航

一、数据库介绍

《中国知网学位论文数据库》包括《中国博士学位论文全文数据库》(China Doctoral Dissertations Full-text Database (简称 CDFD))和《中国优秀硕士学位论文全文数据库》(China Master's Theses Full-text Database (简称 CMFD)),是目前国内资源完备、质量上乘、连续动态更新的中国博硕士学位论文全文数据库。

出版内容:本库目前出版 530 余家博士培养单位的博士学位论文 58 余万篇,800 余家硕士培养 单位的硕士学位论文 613 余万篇,最早回溯至 1984 年,覆盖基础科学、工程技术、农业、医学、哲 学、人文、社会科学等各个领域。

十大专辑:基础科学、工程科技 I、工程科技 II、农业科技、医药卫生科技、哲学与人文科学、 社会科学 I、社会科学 II、信息科技、经济与管理科学。十大专辑下分为 168 个专题。

资源特色:收录全国 985、211 工程等重点高校,中国科学院、社会科学院等研究院所的博士和硕士学位论文。重要特色学科如通信、军事学、中医药等专业的优秀硕士论文。

二、使用说明

1. 进入数据库

进入图书馆主页,点击链接:数据库——常用数据库资源列表——中国知网博硕士学位论文全 文数据库(CNKI)(远程)。

2、下载全文浏览器:

访问数据库时必须先通过校园网关认证;校外用户请通过 VPN 访问;打开文献全文,请下载相 关浏览器。

3. 初级检索

.默认界面即为初级检索界面。可根据不同的检索项,如篇名、关键词、摘要、导师姓名、作者 单位、学位授予单位等,输入相应的关键词检索所需内容。(图1)

步骤 1: 选取检索项:篇名、作者、关键词、作者单位、摘要、基金、全文、导师姓名、主题 词等。

步骤2: 输入相应的检索词。

步骤 3: 点击检索,得到检索结果。

图 1

4. 二次检索(在结果中检索):

在第一次检索结果的基础上再次输入检索词检索,进行一步限定,提高查准率。(图2)

江盛 理工學院圖書館

Jiangsu University of Technology Library

5. 高级检索

利用高级检索系统能进行快速有效的组合查询,优点是查询结果冗余少,命中率高。对于命中率要求较高的查询,建议使用该检索系统。

步骤1:在"检索"下拉选项中选择高级检索。(图3)

图 3

①选择检索项和输入检索词;检索项之间的连接方式总共有三种选择: AND、OR、NOT。

AND: 相当于逻辑"与"的关系。指检索出来的结果必须同时满足两个条件。

OR: 相当于逻辑"或"的关系。指检索出来的结果只要满足其中任意一个条件。

NOT:相当于逻辑"非"的关系。指在满足前一个条件的检索结果中不包括满足后一条件的检索结果。

②选择检索时间范围。

③ 选择优秀论文级别。

④ 检索: 点击检索, 显示内容: (图3)

江蘇理工學院圖書籍 Jiangsu University of Technology Library

默认显示结果每页显示 20条,超过 20条可以翻页查看。

注意:在填写检索项时尽量不要跳开填写,以保证结果的正确性。

6. 检索结果的处理:(图 4)

检索结果可显示题名、摘要和全文。可选择手机阅读、在线阅读原版全文,也可将结果整本下 载、分章或分页下载保存、打印。

	摘要 TiO2基纳米材料改性及光催化降解甲醛性能研究
	徐佳悦
	西南大学
摘要:	光催化技术因其循化氧化效果彻底、无二次污染、成本低、对环境和人体友好等优势一直以来在降解污染物领域具有广泛的应用前景。TIO2是一种间接带隙半导体光催化剂,在治理水体
	污染物和气态污染物方面适用性广。但TIO2催化剂的带旗较宽。电子-空穴复合率高,导致其催化反应效率低。所以本研究目的是将TIO2光催化剂描定于微米级碳布纤维上,并进行改性、探究
	其在可见光照射下光催化得弊甲醛的应用。研究内容包括"第一部分采用种子辅助水热法在碳布上构建102.6块米阵列,并在阿列素面负载时10颗粒形成点一棒状结构。研究结果发现。道当负
	載い10額粒可量音提高評品在可以先下的中醫理解性能而致繁重过多则尝阻碍光催化反应的設计。次化2月11月10日本420mm可以先下的厚解及率达到94%是102件品的2件有条於过多次。 金田族和45.5 例(小台)生用数約2時世界/加速的/2011年500/11月)自由支持が当該64.5 回知(小台)上市が約5.4 世界にかなります。2月15日までよう10-10-10-10-10-10-10-10-10-
	而口坐临地存起到 可口坐临地存起到
	更多
关键词	J: 二氧化钛纳米材料; 光催化氧化; 元素掺杂; 甲醛降解;
专辑:	工程科技I辑
专题:	化学;环境科与资源利用
DOI:	10.27684/d.cnki.gxndx.2023.003355
分类号	: X51;0643.36;0644.1
导师:	张永平
学科专	出: 材料与化工 (专业学位)
硕士电	3 子期刊出版信息: 年期:2024年第03期 网络出版时间:2024-02-16—20

(图4)